|
VALERIC ACID |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PRODUCT IDENTIFICATION |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS NO. | 109-52-4; 12124-87-7 |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
EINECS NO. | 203-677-2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
FORMULA | CH3(CH2)3COOH | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MOL WT. |
102.13 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
H.S. CODE |
2915.60.9000 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TOXICITY |
Mouse LD50 (Oral): 600mg/kg | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SYNONYMS | n-Pentanoic Acid; Butanecarboxylic Acid; Carboxylic acid C5; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1-Butanecarboxylic acid; Propylacetic acid; Valerianic acid; Kyselina Valerova (Czech); | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SMILES |
C(C(O)=O)CCC | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CLASSIFICATION |
Straight chain fatty acid, Flavors & Fragrances, Biochemical ex Plants |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PHYSICAL AND CHEMICAL PROPERTIES |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PHYSICAL STATE | Clear, pale beige liquid | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MELTING POINT | -33.5 C | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BOILING POINT | 186 C | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SPECIFIC GRAVITY |
0.934-0.939 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SOLUBILITY IN WATER | 10-50 mg/ml ( soluble in ethanol, ethyl ether) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
VAPOR DENSITY | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
pKa | 4.84 (Dissociation Constant at 20 C) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
log Pow | 1.39 (Octanol-water) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
VAPOR PRESSURE | 0.196 (mmHg at 25 C) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HENRY'S LAW | 4.72E-07 (atm-m3/mole at 25 C) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OH RATE | 4.11E-12 (cm3/molecule-sec at 25 C Atmospheric ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
NFPA RATINGS |
Health ; 2 Flammability ; 1 Reactivity ; 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
REFRACTIVE INDEX |
1.405-1.414 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
FLASH POINT |
95 C |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
STABILITY | Stable under ordinary conditions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GENERAL DESCRIPTION & EXTERNAL LINKS |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Valeric
acid ( pentanoic acid or propylacetic
acid in systemic naming) is a member of short
chain straight
fatty acids. It is a colorless liquid with
a penetrating aroma; slightly
soluble
in water, soluble in alcohol, and ether.
It melts at -34 C and boils at 186 C . ;
boils at 185 C
. Isovaleric acid (3-methylbutanoic acid ) is a member of branched fatty acids. It is a colorless liquid;
slightly
soluble
in water, soluble in alcohol, and almost organic solvents
including ethers. It has a strong pungent sweaty smell. It melts
at -29 C and boils at 176 C. Their
primary application
is in the synthesis of its esters which are more
volatile
than their parent compounds. Valeric
esters have distinctive fruit-like odors,
which has led to the use in
fruity flavors, perfume
and cosmetics. (e.g: Methyl valerate:flowery,
Ethyl valerate: fruity particularly apple, Ethyl
isovalerate:apple, Amyl valerate: apple and pineapple). There are almost infinite esters obtained from thousands of potential starting materials. Esters are formed by removal of water from an acid and an alcohol, e.g., carboxylic acid esters, phosphoric acid esters, and sulfonic acid esters. Carboxylic acid esters are used as in a variety of direct and indirect applications. Lower chain esters are used as flavouring base materials, plasticizers, solvent carriers and coupling agents. Higher chain compounds are used as components in metalworking fluids, surfactants, lubricants, detergents, oiling agents, emulsifiers, wetting agents textile treatments and emollients, They are also used as intermediates for the manufacture of a variety of target compounds. The almost infinite esters provide a wide range of viscosity, specific gravity, vapor pressure, boiling point, and other physical and chemical properties for the proper application selections. Valeric acid, isovaleric acid their esters are useful raw material for variety of industrial target compounds including;
Esters in lubrication: http://www.forearthonline.com/ Carboxylic Acids: http://www2.chemistry.msu.edu/Wikipedia Linking:http://en.wikipedia.org/wiki/Valeric_acid, http://en.wikipedia.org/wiki/Isovaleric_acid |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SALES SPECIFICATION |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
APPEARANCE |
Clear, pale beige liquid | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CONTENT |
98.0% min |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ACID VALUE |
538 - 550 ( mg KOH/g) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MOISTURE |
0.5% max |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TRANSPORTATION | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PACKING | 190kgs in Drum | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HAZARD CLASS |
8 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
UN NO. | 1760 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GENERAL DESCRIPTION OF CARBOXYLIC ACID | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Carboxylic acid is an organic compound whose molecules contain carboxyl group
and have the condensed chemical formula R-C(=O)-OH in which a carbon atom is
bonded to an oxygen atom by a solid bond and to a hydroxyl group by a single
bond), where R is a hydrogen atom, an alkyl group, or an aryl group. Carboxylic
acids can be synthesized if aldehyde is oxidized. Aldehyde can be obtained by
oxidation of primary alcohol. Accordingly, carboxylic acid can be obtained by
complete oxidation of primary alcohol. A variety of Carboxylic acids are
abundant in nature and many carboxylic acids have their own trivial names.
Examples are shown in table. In substitutive nomenclature, their names are
formed by adding -oic acid' as the suffix to the name of the parent compound.
The first character of carboxylic acid is acidity due to dissociation into H+
cations and RCOO- anions in aqueous solution. The two oxygen atoms are
electronegatively charged and the hydrogen of a carboxyl group can be easily
removed. The presence of electronegative groups next to the carboxylic group
increases the acidity. For example, trichloroacetic acid is a stronger acid than
acetic acid. Carboxylic acid is useful as a parent material to prepare many
chemical derivatives due to the weak acidity of the hydroxyl hydrogen or due to
the difference in electronegativity between carbon and oxygen. The easy
dissociation of the hydroxyl oxygen-hydrogen provide reactions to form an ester
with an alcohol and to form a water-soluble salt with an alkali. Almost infinite
esters are formed through condensation reaction called esterification between
carboxylic acid and alcohol, which produces water. The second
reaction theory is the addition of electrons to the electron-deficient carbon
atom of the carboxyl group. One more theory is decarboxylation (removal of
carbon dioxide form carboxyl group). Carboxylic acids are used to synthesize
acyl halides and acid anhydrides which are generally not target compounds. They
are used as intermediates for the synthesis esters and amides, important
derivatives from carboxylic acid in biochemistry as well as in industrial
fields. There are almost
infinite esters obtained from carboxylic
acids. Esters
are formed by removal of water from an acid and an alcohol. Carboxylic acid
esters are used as in a variety of direct and indirect applications. Lower chain
esters are used as flavouring base materials, plasticizers, solvent carriers and
coupling agents. Higher chain compounds are used as components in metalworking
fluids, surfactants, lubricants, detergents, oiling agents, emulsifiers, wetting
agents textile treatments and emollients, They are also used as intermediates
for the manufacture of a variety of target compounds. The almost infinite esters
provide a wide range of viscosity, specific gravity, vapor pressure, boiling
point, and other physical and chemical properties for the proper application
selections. Amides
are formed from the reaction of a carboxylic acids with an amine.
Carboxylic
acid's reaction to link amino acids is wide in nature to form proteins (amide), the
principal constituents of the protoplasm of all cells. Polyamide is a polymer
containing repeated amide groups such as various kinds of nylon and
polyacrylamides. Carboxylic acid
are in our lives.
|